4^2x=1/128

Simple and best practice solution for 4^2x=1/128 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4^2x=1/128 equation:



4^2x=1/128
We move all terms to the left:
4^2x-(1/128)=0
We add all the numbers together, and all the variables
4^2x-(+1/128)=0
We get rid of parentheses
4^2x-1/128=0
We multiply all the terms by the denominator
4^2x*128-1=0
Wy multiply elements
512x^2-1=0
a = 512; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·512·(-1)
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{2}}{2*512}=\frac{0-32\sqrt{2}}{1024} =-\frac{32\sqrt{2}}{1024} =-\frac{\sqrt{2}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{2}}{2*512}=\frac{0+32\sqrt{2}}{1024} =\frac{32\sqrt{2}}{1024} =\frac{\sqrt{2}}{32} $

See similar equations:

| 105+54+x=90 | | 105+54+x=180 | | 3x−15=5x−23=180 | | 3x-15+5x−23=180 | | 31x+x+10=180 | | X²-12x=-35 | | (m-8)+(m-8)=15 | | 5x−12=2x+24=180 | | 3x2+-17x+-6=0 | | x+((x/12)*1.93)+.10x=129865.833 | | 107+31+x=90 | | 107+31+x=180 | | (4x+5)=(6x-1) | | (2x-4)+(x+2)=13 | | g7=7 | | 65+128+x=180 | | 128+65+x=90 | | 128+65+x=180 | | 20c=840 | | 6d+15=50 | | 10/x+1=3x | | 5a-4=a+68 | | 4¼x=9¾x+44 | | -7+2x=11-2(x-3 | | x^2+4x-135=0 | | 3x^2+12x=405 | | x4+1/x4=727 | | (x+3)=15x | | 2x=-116 | | 4x+1/5x=8 | | C=20(7×c) | | x+8+58=90 |

Equations solver categories